
Optimal basins of attraction in randomly sparse neural network models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 1969

(http://iopscience.iop.org/0305-4470/22/12/002)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 06:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 22 (1989) 1969-1974. Printed in the U K  

Optimal basins of attraction in randomly sparse neural 
network models 

E Gardner 
Department of Physics, Edinburgh University, King’s Buildings, Mayfield Road, Edinburgh 
EH9 352. UK 

Received 9 February 1989 

Abstract. The size of the basin of attraction for randomly sparse neural networks with 
optimal interactions is calculated. For all values of the storage ratio, a = p j C  < 2, where 
p is the number of random uncorrelated patterns and C is the connectivity, the basin of 
attraction is finite, while for (I <0.42, the basin of attraction is (almost) 100%. 

In the past few years, there has been much interest in neural network models (Little 
1974, Hopfield 1982, Amit et af 1985, 1987, Gardner 1987a). Recently, an analytic 
approach was developed in order to calculate properties of interactions which can 
optimise the storage capacity and the size of the basins of attraction (Gardner 1987a, 
1988, Gardner and Derrida 1988). 

In this approach, a parameter K > 0 is introduced, and the constraints, 

must be satisfied for each pattern p and each site i where {tf} are a set of N-bit Ising 
spin configurations ( i  = 1, . . . N, p = 1,.  . . , P )  which one wants to store, and J,j is the 
interaction strength from the site j to the site i. The self-interaction J,, is defined to 
be zero and JI,  is in general asymmetric. The motivation for introducing the parameter 
K can be seen from the dynamics used for recovery of information in the network. 
This will be defined by 

where S , ( t )  is the Ising spin configuration of the network at time r. (The iteration will 
be assumed to be totally parallel although the calculations can also be done for serial 
update.) If SY is a noisy version of the pattern (7 obtained by flipping a finite fraction 
of spins at random, the pattern would be recovered in one iteration if, 

tfh({s;l) ’ 0 (3) 
for each site i. Noise reduction in one iteration is therefore more likely the larger the 
value of K .  Clearly, parameters other than K could be important in determining the 
optimal basin of attraction (Krauth er a1 1988). In this paper, however, only the one 
parameter space of K will be considered and the optimal attraction basin should be 
given by the maximal value of K .  Interactions of a given value of K can be generated 
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using a generalisation (Krauth and Mkzard 1987, Gardner 1988, Forrest 1988, Kepler 
and Abbot 1988) of the perceptron learning algorithm (Rosenblatt 1962, Minsky and 
Papert 1969). This algorithm converges to some solution for the interactions of given 
K provided such solutions exist. Optimal content addressability is therefore obtained 
by increasing K as far as possible. 

The maximum value of the storage ratio a for which random patterns can be stored 
was calculated (Gardner 1987a, 1988, Gardner and Derrida 1988). For uncorrelated 
images, the value decreases from CY = 2 for K = 0 (Cover 1965, Venkatesh 1986) and 
vanishes as K tends to infinity. 

In this paper, results for static properties of storage will be generalised to optimal 
dynamical properties. The basin of attraction at the optimal value of K will be 
calculated as a function of the storage ratio a for random uncorrelated patterns on 
randomly dilute networks in the limit that the fraction of non-zero bonds tends to zero. 

The random dilute model is defined by independently cutting bonds with probability 
1 - C / N .  Exact results will be obtained in the limits C, N tend to infinity where C 
behaves as In N. The model is asymmetric since the bonds, Jll and A I ,  are chosen 
independently and the probability that both are non-zero can be neglected in the 
thermodynamic limit. If the spin configuration { S i ( t ) }  at time t has a finite (macro- 
scopic) overlap M ( t )  with pattern 1 at time t ,  i.e. 

M ( t )  = N- '  1 &:s,(r) (4) 

then it will be shown that for parallel dynamics, M ( t  + 1) is given in the thermodynamic 
limit by 

M ( t + i ) = f , ( M ( t ) )  ( 5 )  

for the dilute model where t + t + 1 implies one completely synchronous time step. fK 
is a function which depends only on the overlap at time t. The exact solution for the 
dynamics can therefore be determined by repeated iteration of (5). 

The reason that the model is exactly soluble or that fK depends only on M (  t )  for 
C of order In N is identical to an argument used previously for the solution of models 
of random automata (Derrida and Pomeau 1986) and for the asymmetrically diluted 
Hopfield model (Derrida et al 1987). Consider a site i. The calculation of the spin 
S,( t )  at site i and at time t involves knowing, by equation (2), all spins Sjc l , (  t - 1) for 
sites j connected to site i. The determination of S , ( t )  as a function of the initial 
condition, {S,(O)} at time t =0,  thus involves a tree of ancestor sites starting at site i 
and branching number C. Provided 

then for a typical site i all sites in its tree will be different, i.e. there are no loops. The 
spins S,,i,( t - 1) at time t - 1 are therefore uncorrelated provided bonds coming into 
the site i are independent of those coming into a different site j. This was proved by 
Derrida and Pomeau (1986) and Derrida et a1 (1987). The dynamics, therefore, is 
determined completely in terms of the first time-step equation (5) which will now be 
derived. 

We introduce the distribution, PK ( A ) ,  



Basins of attraction in randomly sparse neural networks 1971 

for a typical realisation of the patterns and a typical set of interactions which satisfy 
( 1 ) .  If the configuration, S : ( t )  is defined by flipping spins in 6; with a random 
independent probability, +( 1 - M( r ) ) ,  then using equation ( 2 ) ,  

where 

1 
erf(x) =- 1' dy exp(+) 

6 0  
(9) 

PK ('1) will now be derived using the maximum entropy methods of Gardner (1988). 
PK ( A )  is given by 

P K ( A I ) = P K ( - ~ ) / ~  (10) 

where 

and 

In ( 1 1 )  and (12) the integrations are over the set of interactions {Jll} where the bond 
between sites i and j has not been cut and the spherical constraint 

C J ' , = C  
I 

(13) 

has been imposed. PK ( A )  depends on the particular realisation of the random patterns. 
Since it is extensive, we will assume that it is self-averaging and the distribution for a 
typical realisation of the random patterns is therefore given by 

where ( ) represents an average over the distribution of patterns. From equations 
( 1 1 ) - (  14) we then obtain 

where a is a replica index which runs from 1 up to n, and the index j runs over the 
C sites connected to site i. The calculations follow those of Gardner (1988) and are 
done by introducing integral representations for the 0 and S functions which appear 
in ( 1 5 ) .  This allows the averaging over different sites j # i and different patterns p # 1 
to be factorised so that the averaging can be done. In the large-C limit, the integral 
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can be done using the saddle-point method. The order parameters are assumed to be 
repica symmetric at the saddle point. The stability of this solution was given by Gardner 
(1988). One then finds that pK(A) is given by 

where q is given by the maximum of the function 

where 

a =p/c 
and p is the number of patterns. The physical interpretation of the ‘Edwards-Anderson’ 
order parameter, 

is that it is equal to the cosine of the solid angle of the cone of solutions to (1). The 
upper storage capacity is determined by taking the limit q tends to 1 or the limit that 
the solid angle of the cone tends to zero. Gardner (1987a, 1988) showed that the upper 
storage capacity for given K is given in this limit by 

In this limit there are two contributions to pK (A), a 6 function at A = K from the 
part of the t integral with t > - K ,  and a Gaussian for A >  K from f < -K. FK(A)  is 
given by 

and equation (8) becomes 

M(t+1)=f,(M(t))  

The behaviour of the parallel dynamics defined in equation ( 2 )  is therefore deter- 
mined by equation (22) provided the initial configuration has a macroscopic overlap 
with one pattern only. K can be eliminated using equation (20) giving the maximal 
basins of attraction for fixed a. Equation (20) can be solved numerically and in figure 
1 the fixed points of M = f K ( M )  are plotted as a function of a. 
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Figure 1. The stable fixed point ( - - - )  and unstable fixed point (ML, ----) of M = & ( M I  
(equation ( 5 ) )  plotted as a function of a. 

For cy < 2 ,  there is a stable fixed point at M = 1 with a finite basin of attraction; 
for an initial overlap, M(O)> ML, the pattern is recovered. The unstable fixed point, 
M L +  1 only in the limit that cy + 2, implying that for any value of cy below 2, a pattern 
can be made stable with respect to a finite fraction of spin flips. For M ( 0 )  < ML, the 
pattern iterates onto the fixed point at M = 0. It is possible to show that the M = 0 
fixed point of (22) corresponds to a long cycle in configuration space. This can be 
done by deriving the equation for the overlap between configurations at different time 
steps in a similar way to the derivation of (22). If the configuration iterates onto the 
M = 0 fixed point, the overlap between configurations at finite time differences tends 
to zero. For values of a < cyB = 0.42, the unstable fixed point, ML = 0 and the basin of 
attraction is (almost) 100°/~ ; this means that configurations with a macroscopic overlap 
with a pattern (a non-zero value of M however small) iterate onto the pattern. For 
cyB < cy < 2 the unstable fixed point ML increases and the size of the basin of attraction 
decreases. 

For the fully connected model, equation (22) gives correct results for the first time 
step of parallel iteration. Figure 1 therefore gives information about whether the initial 
configuration moves towards or away from the input pattern at the first time step of 
parallel iteration. Comparison with numerical results (Forrest 1988) for the symmetric 
fully connected model shows that MI ,  the size of the basin of attraction as determined 
by the first time step ( M I  is the initial value of M above which the configuration moves 
towards the pattern at the first time step), is typically larger than M O ,  the size of the 
domain of attraction determined by complete iteration to stability. For example, 

at cy = 0.25 
at cy = 0.5 

after complete iteration while 

at cy = 0.25 
at cy = 0.5 = K . 6 7  
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at one time step. A similar effect occurs in the Hopfield-Little model (Little 1974, 
Hopfield 1982) where the critical storage ratio a ,  increases from 0.14 for infinite times 
to 0.63 at the first time step (Gardner et a1 1987). 

Basins of attraction are not improved by going to higher-order interactions (Gardner 
1987b). The above calculations can also be done for interactions of order q > 2. The 
dynamics of (2) is replaced by 

where J, ,  ,IV is the q-body interaction from sites i ? , .  . . , i, into site i. If C is the total 
number of connections into a site, then equation (20) is unaltered and so the upper 
storage capacity is independent of the order of the interaction provided a is scaled in 
terms of the connectivity, C. The basins of attraction, however, become smaller as q 
increases since M( t )  on the right-hand side of (22) is replaced by ( M (  t ) ) ' 4 - 1 '  using 
the same argument as was used in the derivation of (8). 

It would be interesting to extend the results of this paper LO the storage of correlated 
patterns. Although the storage capacity is larger (Gardner 1987a, 1988, Gardner and 
Derrida 1988) the basins of attraction should be limited in directions associated with 
this correlation. 
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